Detection of Defects in C/C Composites Using Infrared Thermography

INTRODUCTION

The objective of this study is the use of NDE to determine subsurface defects in C/C composite disk brakes. With the use of existing NDE methods the equipment is expensive; this project deals with the ability to use thermography method but with less expensive equipment. The following main objectives of this work include:

1. Use FEA Models to better understand the capabilities/limitations of the NDE methods available.
2. Use various thermography techniques currently available at SIUC to determine the capabilities/limitations.
3. Use both heat treated and non-heat treated C/C composite disk brake samples.
4. Create an inexpensive method for determining subsurface defects in C/C composite material as a visual/quality inspection system.

Experimental Setup

Thermal Contrast

$$C(t) = \frac{T(t) - T_{ref}(t)}{T_{ref}(t)}$$

Commercial Defect Detection with Thermography

Experimental Results for Blind Hole and Drilled Side Hole

Machined Defects (CAFS-CVI C/C)

Manufactured Defects

Thermography Testing of C/C Composite Disk Brakes

Sample Preparation

Thermal Measurement with IR Camera

Heat Flux Application

FEA Models

Verification of results with SEM

Experimental Results with SEM

Mapping of CAFS-CVI C/C Samples

Defect Detection

Region of Highest Thermal Contrast

Heat Treated MABS C/C Disk Brakes

Temperature-Time Curve of Commercial Disk Brake

Commercial Defect Detection with Thermography

MABS C/C Disk Brake Image

MABS C/C Disk Brake Thermal Image of Delamination